Fast greedy algorithms for dictionary selection with generalized sparsity constraints

Kaito Fujii & Tasuku Soma (UTokyo)

Neural Information Processing Systems 2018, spotlight presentation

Dec. 7, 2018

Dictionary

If real-world signals consist of a few patterns,

a "good" dictionary gives sparse representations of each signal

Dictionary

If real-world signals consist of a few patterns,

a "good" dictionary gives sparse representations of each signal

patch

If real-world signals consist of a few patterns,

a "good" dictionary gives sparse representations of each signal

patch

Dictionary

If real-world signals consist of a few patterns,

a "good" dictionary gives sparse representations of each signal

Union of existing dictionaries

Selected atoms as a dictionary

Atoms for each patch \mathbf{y}_t ($\forall t \in [T]$)

Union of existing dictionaries

Atoms for each patch \mathbf{y}_t ($\forall t \in [T]$)

Union of existing dictionaries

Union of existing dictionaries

$$\underset{X \subseteq V}{\text{Maximize}} \max_{(Z_1, \dots, Z_T) \in \mathcal{I}: \ Z_t \subseteq X} \sum_{t=1}^T f_t(Z_t) \quad \text{subject to } |X| \le k$$

1st maximization:

selecting a set *X* of atoms as a dictionary

$$\underset{X \subseteq V}{\text{Maximize}} \max_{\substack{(Z_1, \dots, Z_T) \in \mathcal{I} : Z_t \subseteq X}} \sum_{t=1}^T f_t(Z_t) \quad \text{subject to } |X| \le k$$

2nd maximization:

selecting a set $Z_t \subseteq X$ of atoms for a sparse representation of each patch **under sparsity constraint** \mathcal{I}

A fast greedy algorithm with approximation ratio guarantees

A fast greedy algorithm with approximation ratio guarantees

2 *p*-Replacement sparsity families:

A novel class of sparsity constraints generalizing existing ones 4/9

Replacement Greedy for two-stage submodular maximization [Stan+'17]

Replacement Greedy for two-stage submodular maximization [Stan+'17]

1st result application to dictionary selection

Replacement Greedy O(*s*²*dknT*) running time

Replacement Greedy for two-stage submodular maximization [Stan+'17]

1st result application to dictionary selection

Replacement Greedy O(*s*²*dknT*) running time

2nd result $O(s^2d)$ acceleration with the concept of OMP

Replacement OMP O((n + ds)kT) running time

algorithm	approximation ratio	running time	empirical performance
SDS _{MA} [Krause-Cevher'10]	\checkmark	\checkmark	
SDS _{OMP} [Krause–Cevher'10]			\checkmark
Replacement Greedy	\checkmark		\checkmark
Replacement OMP	\checkmark	\checkmark	\checkmark

2 *p*-Replacement sparsity families

average sparsity [Cevher–Krause'11]

UI

average sparsity w/o individual sparsity

UI

block sparsity [Krause–Cevher'10]

individual sparsity [Krause–Cevher'10] individual matroids

[Stan+'17]

C,

2 *p*-Replacement sparsity families

2 *p*-Replacement sparsity families

We extend Replacement OMP to *p*-replacement sparsity families

Theorem

Replacement OMP achieves
$$\frac{m_{2s}^2}{M_{s,2}^2} \left(1 - \exp\left(-\frac{k}{p}\frac{M_{s,2}}{m_{2s}}\right)\right)$$
-approximation if \mathcal{I} is *p*-replacement sparse

Assumption

$$f_t(Z_t) \stackrel{\Delta}{=} \max_{\mathbf{w}_t: \text{ supp}(\mathbf{w}_t) \subseteq Z_t} u_t(\mathbf{w}_t)$$

where u_t is m_{2s} -strongly concave on $\Omega_{2s} = \{(\mathbf{x}, \mathbf{y}) : \|\mathbf{x} - \mathbf{y}\|_0 \le 2s\}$

and $M_{s,2}$ -smooth on $\Omega_{s,2} = \{(\mathbf{x}, \mathbf{y}) : \|\mathbf{x}\|_0 \le s, \|\mathbf{y}\|_0 \le s, \|\mathbf{x} - \mathbf{y}\|_0 \le 2\}$

Overview

1 Replacement OMP: A fast algorithm for dictionary selection

2 *p***-Replacement sparsity families**: A class of sparsity constraints

Other contributions

• Empirical comparison with dictionary learning methods

• Extensions to online dictionary selection

Poster #78 at Room 210 & 230 AB, Thu 10:45–12:45