Neural Voice Cloning with a Few Samples

Sercan O. Arik, Jitong Chen, Kainan Peng*, Wei Ping, Yanqi Zhou

Bai Research

Motivations

- Text-to-speech (TTS) models can be conditioned on text and speaker identity. ullet
 - Text: linguistic information, content of the generated speech. \bullet
 - Speaker identity: speaker information (accent, pitch, speech rate...).

Motivations

- Text-to-speech (TTS) models can be conditioned on text and speaker identity. ullet
 - Text: linguistic information, content of the generated speech. \bullet
 - Speaker identity: speaker information (accent, pitch, speech rate...).

- Limitations: ightarrow
 - Can only generate speech for observed speakers during training.
 - Require lots of speech samples per speaker (e.g., Deep Voice 2). ightarrow

Voice Cloning

- Voice cloning: synthesize the voices of new speakers from a few speech samples (few-shot generative model).
- Applications: personalized speech interfaces, content creation, assistive technology...

Voice Cloning

- Voice cloning: synthesize the voices of new speakers from a few speech samples (few-shot generative model).
- Applications: personalized speech interfaces, content creation, assistive technology...
- Challenges: ullet
 - Generalization: learn the voice of a new speaker.
 - Efficiency: extract the speaker characteristics from a few speech samples. \bullet
 - Computational cost: cloning with low latency and small footprint. ullet
- Two approaches:
 - Speaker adaptation.
 - Speaker encoding.

Speaker Adaptation

- Fine-tune a pre-trained multi-speaker model for a new speaker.
- Training data: a few text and audio pairs.

Speaker Adaptation

- Fine-tune a pre-trained multi-speaker model for a new speaker.
- Training data: a few text and audio pairs.
- Two options for speaker adaptation:

Fine-tune the whole model

Fine-tune the speaker embedding only

Cloning audio

Speaker Adaptation Analysis

Approaches	Speaker Adaptation		
	Embedding-only	Whole-	
Cloning time	8 h	5 m	
# of parameters per speaker	128	25 mi	

Speaker Encoding

- Directly predict a new speaker embedding for a multi-speaker model. ullet
- Train a speaker encoder with audio and speaker embedding pairs.

Speaker Encoding

- Directly predict a new speaker embedding for a multi-speaker model. ullet
- Train a speaker encoder with audio and speaker embedding pairs.
- Cloning time: a few seconds, more favorable for low-resource deployment. ullet

Results

- Vocoder: classical Griffin-Lim algorithm.
- Demo website: http://audiodemos.github.io

Approaches		Speaker Adaptation		
		Embedding-only	Whole-model	
Mean Opinion Score (MOS)	Naturalness (5-scale)	2.67	3.16	
	Similarity (4-scale)	2.95	3.16	

Speaker Encoding

2.99

2.85

Voice Morphing via Embedding Manipulation

- BritishMale + AveragedFemale AveragedMale = BritishFemale ullet
- BritishMale + AveragedAmerican AveragedBritish = AmericanMale ullet

Thank you!

Welcome to our poster, and listen to samples!

Today, Session B, #91

