SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator

Cong Fang

Chris Junchi Li

Zhouchen Lin

Tong Zhang

We consider the following non-convex problem:

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \tag{**}$$

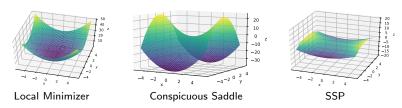
Study both finite-sum case (n is finite) and online case (n is ∞).

• ϵ -approximate first-order stationary point, or simply an FSP, if

$$\|\nabla f(x)\| \le \epsilon \tag{0.1}$$

• (ϵ, δ) -approximate second-order stationary point, or simply an SSP, if

$$\|\nabla f(x)\| \le \epsilon, \qquad \lambda_{\min}\left(\nabla^2 f(x)\right) \ge -\mathcal{O}(\sqrt{\varepsilon})$$
 (0.2)



Comparison of Existing Methods

	Algorithm		Online	Finite-Sum
First-order Stationary Point	GD / SGD	(Nesterov, 2004)	ε^{-4}	$n\varepsilon^{-2}$
	SVRG / SCSG	(Allen-Zhu, Hazan, 2016) (Reddi et al., 2016) (Lei et al., 2017)	$\varepsilon^{-3.333}$	$n + n^{2/3} \varepsilon^{-2}$
	SNVRG	(Zhou et al., 2018)	ε^{-3}	$n + n^{1/2} \varepsilon^{-2}$
	SPIDER-SFO	(this work)	ε^{-3}	$n + n^{1/2} \varepsilon^{-2} \Delta$
Second-order Stationary	Perturbed GD / SGD	(Ge et al.,2015) (Jin et al.,2017b)	$poly(d)\varepsilon^{-4}$	$n\varepsilon^{-2}$
	NEON+GD / NEON+SGD	(Xu et al.,2017) (Allen-zhu, Li,2017b)	ε^{-4}	$n arepsilon^{-2}$
Point	AGD	(Jin et al.,2017b)	N/A	$n\varepsilon^{-1.75}$
(Hessian- Lipschitz Required)	NEON+SVRG / NEON+SCSG	(Allen-Zhu, Hazan, 2016) (Reddi et al.,2016) (Lei et al.,2017)	$\varepsilon^{-3.5}$ $(\varepsilon^{-3.333})$	$n\varepsilon^{-1.5} + n^{2/3}\varepsilon^{-2}$
	NEON+FastCubic/CDHS	(Agarwal et al.,2017) (Carmon et al.,2016) (Tripuraneni et al.,2017)	$\varepsilon^{-3.5}$	$n\varepsilon^{-1.5} + n^{3/4}\varepsilon^{-1.75}$
	NEON+Natasha2	(Allen-Zhu, 2017) (Xu et al., 2017) (Allen-Zhu, Li, 2015)	$\varepsilon^{-3.5}$ $(\varepsilon^{-3.25})$	$n\varepsilon^{-1.5} + n^{2/3}\varepsilon^{-2}$
	SPIDER-SFO ⁺	(this work)	ε^{-3}	$n^{1/2}\epsilon^{-2} \ (n \ge \epsilon^{-1})$

Example: Algorithm for Searching FSP in Expectation

Algorithm 1 Spider-SFO in Expectation: Input \mathbf{x}^0 , q, S_1 , S_2 , n_0 , ϵ (For a finding FSP)

- 1: for k = 0 to K do
- 2: **if** mod(k,q) = 0 **then**
- 3: Draw S_1 samples (or compute the full gradient for the finite-sum case), $\mathbf{v}^k = \nabla f_{\mathcal{S}_1}(\mathbf{x}^k)$
- 4: else
- 5: Draw S_2 samples, and let $\mathbf{v}^k = \nabla f_{\mathcal{S}_2}(\mathbf{x}^k) \nabla f_{\mathcal{S}_2}(\mathbf{x}^{k-1}) + \mathbf{v}^{k-1}$
- 6: end if
- 7: $\mathbf{x}^{k+1} = \mathbf{x}^k \eta^k \mathbf{v}^k$ where $\eta^k = \min\left(\frac{\epsilon}{Ln_0\|\mathbf{v}^k\|}, \frac{1}{2Ln_0}\right)$
- 8: end for
- 9: Return $\tilde{\mathbf{x}}$ chosen uniformly at random from $\{\mathbf{x}^k\}_{k=0}^{K-1}$
 - We prove the stochastic gradient costs to find an approximate FSP is both upper and lower bounded by $\mathcal{O}(n^{1/2}\epsilon^{-2})$ under certain conditions
 - A similar complexity has also been obtain by Zhou et al., (2018)

Stochastic Path-Integrated Differential Estimator: Core Idea

Observe a sequence $\widehat{x}_{0:K} = \{\widehat{x}_0, \dots, \widehat{x}_K\}$, the goal is to dynamically track for a quantity Q(x). For $Q(\widehat{x}^k)$ for $k = 0, 1, \dots, K$

- Initial estimate $\widetilde{Q}(\widehat{x}^0) \approx Q(\widehat{x}^0)$
- Unbiased estimate $\xi_k(\widehat{x}_{0:k})$ of $Q(\widehat{x}^k) Q(\widehat{x}^{k-1})$ such that for each $k = 1, \ldots, K$

$$\mathbb{E}\left[\xi_k(\widehat{x}_{0:k})\mid \widehat{x}_{0:k}\right] = Q(\widehat{x}^k) - Q(\widehat{x}^{k-1})$$

Integrate the stochastic differential estimate as

$$\widetilde{Q}(\widehat{x}_{0:K}) := \widetilde{Q}(\widehat{x}^0) + \sum_{k=1}^K \xi_k(\widehat{x}_{0:k})$$
(0.3)

- Call estimator $\widetilde{Q}(\widehat{x}_{0:K})$ the Stochastic Path-Integrated Differential EstimatoR, or SPIDER for brevity
- Example: Q(x) is picked as $\nabla f(x)$ (or f(x))

A similar idea, named SARAH, has been proposed by Nguyen et al. (2017)

Summary and Extension

Summary:

- (i) Proposed Spider technique for tracking:
- Avoidance of excessive access of oracles and reduction of time complexity
- Potential application in many stochastic estimation problems
- (ii) Proposed Spider-SFO algorithms for first-order non-convex optimization
 - Achieves $\widetilde{\mathcal{O}}(\varepsilon^{-3})$ rate for finding ε -FSP in expectation
 - Proved that SPIDER-SFO matches the lower bound in the finite-sum case (Carmon et al. 2017)

Extension in the long version: https://arxiv.org/pdf/1807.01695.pdf

- (i) Obtain high-probability results for SPIDER-SFO
- (ii) Proposed $\operatorname{Spider}\text{-}\mathsf{SFO}^+$ algorithms for first-order non-convex optimization
 - Achieves $\widetilde{\mathcal{O}}(\varepsilon^{-3})$ rate for finding $(\varepsilon, \mathcal{O}(\sqrt{\varepsilon}))$ -SSP
- (iii) Proposed Spider-SZO algorithm for zeroth-order non-convex optimization
 - Achieves an improved rate of $\mathcal{O}(d\varepsilon^{-3})$

Thank you!

Welcome to Poster #49 in Room 210 & 230 AB today!